Low-Temperature Solution-Processed Gate Dielectrics for High-Performance Organic Thin Film Transistors

Materials (Basel). 2015 Oct 12;8(10):6926-6934. doi: 10.3390/ma8105352.

Abstract

A low-temperature solution-processed high-k gate dielectric layer for use in a high-performance solution-processed semiconducting polymer organic thin-film transistor (OTFT) was demonstrated. Photochemical activation of sol-gel-derived AlOx films under 150 °C permitted the formation of a dense film with low leakage and relatively high dielectric-permittivity characteristics, which are almost comparable to the results yielded by the conventionally used vacuum deposition and high temperature annealing method. Octadecylphosphonic acid (ODPA) self-assembled monolayer (SAM) treatment of the AlOx was employed in order to realize high-performance (>0.4 cm²/Vs saturation mobility) and low-operation-voltage (<5 V) diketopyrrolopyrrole (DPP)-based OTFTs on an ultra-thin polyimide film (3-μm thick). Thus, low-temperature photochemically-annealed solution-processed AlOx film with SAM layer is an attractive candidate as a dielectric-layer for use in high-performance organic TFTs operated at low voltages.

Keywords: gate dielectric layer; low-temperature sol-gel method; low-voltage operation; organic thin film transistor; photochemical activation; self-assembled monolayer.