Spatial forecasting of seismicity provided from Earth observation by space satellite technology

Sci Rep. 2020 Jun 16;10(1):9696. doi: 10.1038/s41598-020-66478-9.

Abstract

Understanding the controls on the distribution and magnitude of earthquakes is required for effective earthquake forecasting. We present a study that demonstrates that the distribution and size of earthquakes in Italy correlates with the steady state rate at which the Earth's crust moves. We use a new high-resolution horizontal strain rate (S) field determined from a very dense velocity field derived from the combination of Global Navigation Satellite System (GNSS) and satellite radar interferometry from two decades of observations. Through a statistical approach we study the correlation between the S and the magnitude of M ≥ 2.5 earthquakes that occurred in the same period of satellite observations. We found that the probability of earthquakes occurring is linked to S by a linear correlation, and more specifically the probability that a strong seismic event occurs doubles with the doubling of S. It also means that lower horizontal strain rate zone can have as large earthquakes as high horizontal strain rate zones, just with a reduced probability. The work demonstrates an independent and quantitative tool to spatially forecast seismicity.