The Antibacterial Efficacy and In Vivo Toxicity of Sodium Hypochlorite and Electrolyzed Oxidizing (EO) Water-Based Endodontic Irrigating Solutions

Materials (Basel). 2020 Jan 7;13(2):260. doi: 10.3390/ma13020260.

Abstract

The objective of this study was to evaluate the antibacterial efficacy against Enterococcus faecalis and Streptococcus mutans and in vivo toxicity using embryonic zebrafish assays of sodium hypochlorite (NaOCl) and electrolyzed oxidizing (EO) water (containing hypochlorous acid (HOCl))-based root canal irrigating solutions.

Methodology: Using 100 μL microbial count of 1 × 108 cfu/mL Enterococcus faecalis to mix with each 10 mL specimen of NaOCl or HOCl for designed time periods. The above protocol was also repeated for Streptococcus mutans. The concentration of viable microorganisms was estimated based on each standardized inoculum using a plate-count method. Zebrafish embryo assays were used to evaluate acute toxicity.

Results: All the HOCl or NaOCl treatment groups showed > 99.9% antibacterial efficacy against Enterococcus faecalis and Streptococcus mutans. Zebrafish embryos showed almost complete dissolution in 1.5% NaOCl within 5 min. Both survival rates after being treated with 0.0125% and 0.0250% HOCl for 0.5 min or 1.0 min were similar to that of E3 medium.

Conclusions: Both NaOCl and HOCl revealed similar antibacterial efficacy (> 99.9%) against Enterococcus faecalis and Streptococcus mutans. While 1.5% NaOCl fully dissolved the Zebrafish embryos, both 0.0125% and 0.0250% HOCl showed little in vivo toxicity, affirming its potential as an alternative irrigation solution for vital pulp therapy.

Keywords: Enterococcus faecalis; Streptococcus mutans; irrigation solutions; vital pulp therapy; zebrafish.