Emission spectroscopy of expanding laser-induced gaseous hydrogen-nitrogen plasma

Appl Opt. 2017 Nov 20;56(33):9277-9284. doi: 10.1364/AO.56.009277.

Abstract

Microplasma is generated in an ultra-high-pure H2 and N2 gas mixture with a Nd:YAG laser device that is operated at the fundamental wavelength of 1064 nm. The gas mixture ratio of H2 and N2 is 9 to 1 at a pressure of 1.21 ± 0.03 105 Pa inside a chamber. A Czerny-Turner-type spectrometer and an intensified charge-coupled device are utilized for the recording of plasma emission spectra. The line-of-sight measurements are Abel inverted to determine the radial distributions of electron number density and temperature. Recently derived empirical formulas are utilized for the extraction of values for electron density. The Boltzmann plot and line-to-continuum methods are implemented for the diagnostic of electron excitation temperature. The expansion speed of the plasma kernel maximum electron temperature amounts to 1 km/s at a time delay of 300 ns. The microplasma, initiated by focusing 14 ns, 140 mJ pulses, can be described by an isentropic expansion model.