Entanglement and decoherence: fragile and robust entanglement

Phys Rev Lett. 2011 Aug 26;107(9):090501. doi: 10.1103/PhysRevLett.107.090501. Epub 2011 Aug 23.

Abstract

The destruction of entanglement of open quantum systems by decoherence is investigated in the asymptotic long-time limit. For this purpose a general and analytically solvable decoherence model is presented which does not involve any weak-coupling or Markovian assumption. It is shown that two fundamentally different classes of entangled states can be distinguished and that they can be influenced significantly by two important environmental properties, namely, its initially prepared state and its size. Quantum states of the first class are fragile against decoherence so that they can be disentangled asymptotically even if coherences between pointer states are still present. Quantum states of the second type are robust against decoherence. Asymptotically they can be disentangled only if also decoherence is perfect. A simple criterion for identifying these two classes on the basis of two-qubit entanglement is presented.