The influence of riparian woody vegetation on bankfull alluvial river morphodynamics

Sci Rep. 2022 Oct 28;12(1):18141. doi: 10.1038/s41598-022-22846-1.

Abstract

Exploring the effects of bank vegetation on fluvial morphodynamics has long been an essential part of fluvial morphodynamic-related research. In a practical sense, a central question is: does increased vegetation density increase or decrease the channel width? Several aspects concerning the role of vegetation may result in examples of both width decrease and increase. In this study, we examined more than 170 alluvial river sections. Our goal was to detect the phenomena that ultimately determine riparian woody vegetation-induced width variation. We found that bed material is a governing factor. In the case of fine-grained material, i.e. median size D50 < 2 mm, increasingly densely forested riparian vegetation reduces the bankfull Shields number, and destabilizes the banks toward a wider bankfull channel. In the case of coarse-grained material (i.e. median size D50 ≥ 16 mm), the effect is the opposite; increased density is correlated with a higher bankfull Shields number and a narrower bankfull channel. The extent of the role of vegetation varies depending on the ratio of characteristic root zone depth to channel depth and channel width. We present an improved estimator for bankfull Shields number, which considers riparian vegetation density. The bankfull Shields number can be estimated up to 19% more accurately with our corrected estimator.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ecosystem*
  • Forests
  • Rivers*