Measuring Surface and Interfacial Tension In Situ in Microdripping Mode for Electrohydrodynamic Applications

Micromachines (Basel). 2020 Jul 16;11(7):687. doi: 10.3390/mi11070687.

Abstract

Walking on water is made possible, at least for tiny insects, by molecular interaction at the interfaces of dissimilar materials. Impact of these interactions-surface tension (SFT) and, more broadly, interfacial tension (IFT)-is particularly evident at micro and nano sizescales. Thus, implications of walking on water can be significant for SFT or IFT (S/IFT)-driven nanofabrication technologies, such as electrohydrodynamic atomization (EHDA), in developing next generation biomimetic microphysiological systems (MPS) and drug delivery systems (DDS). However, current methods for estimating S/IFT, based on sessile drops or new surface formation on a ring or plate, are unsuitable for integration with EHDA assemblies used in electrospinning and electrospraying. Here, we show an in situ method for estimating S/IFT specifically devised for EHDA applications using signal processing algorithms that correlate the frequency and periodicity of liquid dispensed in EHDA microdripping mode with numerical solutions from computational fluid dynamics (CFD). Estimated S/IFT was generally in agreement with published ranges for water-air, 70% ethanol-air, chloroform-air, and chloroform-water. SFT for solutions with surfactants decreased with increasing concentrations of surfactant, but at relatively higher than published values. This was anticipated, considering that established methods measure SFT at boundaries with asymmetrically high concentrations of surfactants which lower SFT.

Keywords: computational fluid dynamics; drug delivery systems; electrospinning; electrospraying; microphysiological systems; nanofabrication; surface tension; tissue engineering.