Towards a holistic framework for the evaluation of emergency plans in indoor environments

Sensors (Basel). 2014 Mar 6;14(3):4513-35. doi: 10.3390/s140304513.

Abstract

One of the most promising fields for ambient intelligence is the implementation of intelligent emergency plans. Because the use of drills and living labs cannot reproduce social behaviors, such as panic attacks, that strongly affect these plans, the use of agent-based social simulation provides an approach to evaluate these plans more thoroughly. (1) The hypothesis presented in this paper is that there has been little interest in describing the key modules that these simulators must include, such as formally represented knowledge and a realistic simulated sensor model, and especially in providing researchers with tools to reuse, extend and interconnect modules from different works. This lack of interest hinders researchers from achieving a holistic framework for evaluating emergency plans and forces them to reconsider and to implement the same components from scratch over and over. In addition to supporting this hypothesis by considering over 150 simulators, this paper: (2) defines the main modules identified and proposes the use of semantic web technologies as a cornerstone for the aforementioned holistic framework; (3) provides a basic methodology to achieve the framework; (4) identifies the main challenges; and (5) presents an open and free software tool to hint at the potential of such a holistic view of emergency plan evaluation in indoor environments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Civil Defense*
  • Computer Simulation
  • Environment*
  • Models, Theoretical
  • Software