Lithium aminoborohydrides 16. Synthesis and reactions of monomeric and dimeric aminoboranes

J Org Chem. 2008 Mar 7;73(5):1898-905. doi: 10.1021/jo702271c. Epub 2008 Jan 24.

Abstract

Aminoboranes are synthesized in situ from the reaction of the corresponding lithium aminoborohydrides (LABs) with methyl iodide, trimethylsilylchloride (TMS-Cl), or benzyl chloride under ambient conditions. In hexanes, the reaction using methyl iodide produces aminoborane and methane, whereas in tetrahydro-furan (THF) this reaction produces amine-boranes (R1R2HN:BH3) as the major product. The reaction of iPr-LAB with TMS-Cl or benzyl chloride yields exclusively diisopropylaminoborane [BH2-N(iPr)2] in THF as well as in hexanes at 25 degrees C. Diisopropylaminoborane and dicyclohexylaminoborane exist as monomers due to the steric requirement of the alkyl group. All other aminoboranes studied are not sterically hindered enough to be monomers in solution, but instead exist as a mixture of monomers and dimers. The dimers are four-membered rings formed through boron-nitrogen coordination. In general aminoboranes are not hydroborating reagents. However, monomeric aminoboranes, such as BH2-N(iPr)2, can reduce nitriles in the presence of catalytic amounts of LiBH4. This BH2-N(iPr)2/LiBH4 reducing system also re-duces ketones, aldehydes, and esters. Diisopropylaminoborane, synthesized from iPr-LAB, can be converted into boronic acids by a palladium-catalyzed reaction with aryl bromides. Aminoboranes derived from heterocyclic amines, such as pyrrole, pyrazole, and imidazole, can be prepared by the direct reaction of borane/tetrahydrofuran (BH3:THF) with these heterocyclic amines. It has been reported that pyrazole-derived aminoborane forms a six-membered dimer through boron-nitrogen coordination, where as, pyrrolylborane forms a dimer through boron-hydrogen coordination. Pyrrolylborane monohydroborates both alkenes and alkynes at ambient temperatures. Hydroboration of styrene with pyrrolylborane followed by hydrolysis gives the corresponding boronic acid, 2-phenylethylboronic acid, in 40% yield. Similarly phenylacetylene is mono-hydroborated by pyrrolylborane, to give E-2-phenylethenylboronic acid in 50% yield.