Host Plant and Antibiotic Effects on Scent Bouquet Composition of Anastrepha ludens and Anastrepha obliqua Calling Males, Two Polyphagous Tephritid Pests

Insects. 2020 May 14;11(5):309. doi: 10.3390/insects11050309.

Abstract

In insects, the quality of sex pheromones plays a critical role in mating success and can be determined by the ability of larvae/adults to accrue chemical precursors. We tested the host-quality-effect hypothesis by analyzing the chemical composition of scent bouquets emitted by calling males of two polyphagous tephritid species (Anastrepha ludens and A. obliqua) that originated from 13 fruit species representing diverse plant families. In A. ludens, we worked with an ancestral host (Rutaceae), nine exotic ones (Rutaceae, Anacardiaceae, Rosaceae, Solanaceae, Lythraceae), and two species never attacked in nature but that represent candidates for host-range expansion (Solanaceae, Myrtaceae). In A. obliqua, we tested an ancestral, a native, and an exotic host (Anacardiaceae), one occasional (Myrtaceae), and one fruit never attacked in nature (Solanaceae). We identified a core scent bouquet and significant variation in the bouquet's composition depending on the fruit the larvae developed in. We also tested the possible microbial role on the scent bouquet by treating adults with antibiotics, finding a significant effect on quantity but not composition. We dwell on plasticity to partially explain our results and discuss the influence hosts could have on male competitiveness driven by variations in scent bouquet composition and how this could impact insect sterile technique programs.

Keywords: Anastrepha; Sterile Insect Technique; Tephritidae; host plant; microbiota; phenotypic plasticity; sequestered compounds; sex pheromones; speciation.