Study on the Degradation of Optical Silicone Exposed to Harsh Environments

Materials (Basel). 2018 Jul 28;11(8):1305. doi: 10.3390/ma11081305.

Abstract

Degradation mechanisms of silicone plates under harsh environment conditions are studied in this investigation. Environmental degradation of silicone free form, used as secondary optics in Light Emitting Diode LED lighting lamps and luminaires or any other applications requiring high quality optics being used, has negative implications for the optical performance. Degradation of silicone plates in harsh environment conditions was studied in salt bath and swimming water environments, using different light radiation and temperatures. Samples were exposed to harsh environment conditions for up to 4 months. Optical and chemical characteristics of exposed plates were studied using an Fourier transform infrared- attenuated total reflection FTIR-ATR spectrometer, an integrated sphere, and a Lambda 950 Ultraviolet-Visible UV-VIS spectrophotometer. Results show that 100 °C salt bath exposure had the most severe degrading effect on the optical characteristic of silicone plates. Increasing exposure time in the salt bath at that high temperature is associated with a significant deterioration of both optical (i.e., light transmission and relative radiant power value) and mechanical properties of silicone samples. On the contrary, silicone plates showed a great degree of stability against light exposure (UV at 360 nm and blue light at 450 nm).

Keywords: LED; degradation; harsh environment; lighting; optic; silicone.