Levers supporting tariff growth for water services: evidence from a contingent valuation analysis

J Environ Manage. 2018 Feb 1:207:23-31. doi: 10.1016/j.jenvman.2017.11.008. Epub 2017 Nov 15.

Abstract

The backwardness of the water utilities sector necessitates urgent investment in infrastructure to improve water quality and efficiency in water supply networks. A policy of tariff growth represents the main source to sustain such investments. Therefore, customer engagement in the form of willingness to pay (WTP) is highly desirable by water utilities to obtain social legitimization and support. This study examines the determinants of consumers' WTP for improvement programs for three drinking water issues: quality of water sources, renewal of water mains, and building of new wastewater treatment plants. The study is based on a survey conducted among a sample of 587 customers of a water utility located in the province of Verona in the north of Italy. The contingence valuation method is used to measure WTP. Specifically, an ordinal logistic regression model yields the following significant determinants of WTP: quality of water and services provided, preference for privatization of the water utility, sustainable consumption of water, and some socio-demographic variables. The findings provide interesting insights into the drivers of WTP as well as managerial recommendations for water utilities. In particular, the findings show that water utilities need to improve service and water quality to increase customers' acceptance of tariff growth. In addition, utilities should invest in customer education and communication activities focusing on specific age groups (e.g., older customers) to enhance their WTP. Finally, communication strategies should reinforce the possible role of liberalization and privatization in supporting infrastructure investments.

Keywords: Customer; Information campaign; Investment improvement; Privatization; Service quality; Tariff sustainability.

MeSH terms

  • Investments
  • Italy
  • Water
  • Water Quality*
  • Water Supply*

Substances

  • Water