New insights to study the accumulation and erosion processes of fine-grained organic sediments in combined sewer systems from a laboratory scale model

Sci Total Environ. 2020 May 10:716:136923. doi: 10.1016/j.scitotenv.2020.136923. Epub 2020 Jan 25.

Abstract

The deposition and resuspension of sediments are issues of considerable concern in combined sewer systems management. Sediments can produce the loss of hydraulic capacity and odour generation in sewers, and are also considered the main source of pollution due to their occasional uncontrolled discharges into the environment via Combined Sewer Overflows (CSO). Sewer sediments contain granular and cohesive organic fractions that can have a significant influence on bed resistance. In order to address the relationship between sewer sediment composition and its erodibility, accumulation and erosion experiments were performed in a flume test facility fed with wastewater. The flume was placed in a Wastewater Treatment Plant (WWTP), in which different circular pipe geometries were set. Wastewater flow inlet conditions and bed structures were monitored during the experiments. The photogrammetric technique Structure from Motion (SfM) was applied to record the bed deposit structures, providing accurate measurements of the accumulation rates. The SfM was also used to assess sediment transport and the characteristics of the bed forms after the erosion tests. In addition, velocity distributions and shear stress profiles were measured during the erosion tests to characterize flow resistance and sediment erosion. During both accumulation and erosion tests, sediments were sampled in order to analyse their physicochemical properties, thus highlighting the study of the biodegradability of the organic matter. Different deposition periods showed biological transformations in the bed deposit structure, which were seen to affect its cohesion, and in consequence, its erosion threshold. Tests with significant erosion rates agreed in broad terms with dimensionless sediment transport models derived from previous experimental studies performed with partly cohesive and organic materials in sewer pipes.

Keywords: Bed load transport; Biodegradability; Combined sewers; Erodibility; Photogrammetry; Sewer sediments.