Wireless Sensor Network in Agriculture: Model of Cyber Security

Sensors (Basel). 2020 Nov 25;20(23):6747. doi: 10.3390/s20236747.

Abstract

Nowadays, wireless sensor networks (WSN) are widely used in agriculture monitoring to improve the quality and productivity of farming. In this application, sensors gather different types of data (i.e., humidity, carbon dioxide level, and temperature) in real-time scenarios. Thus, data gathering, transmission, and rapid response to new circumstances require a secured data mechanism to avoid malicious adversaries. Therefore, this paper focuses on data security from the data origin source to the end-user, and proposes a general data security model that is independent of the network topology and structure, and can be widely used in the agriculture monitoring application. The developed model considers practical aspects, the architecture of the sensor node, as well as the necessity to save energy while ensuring data security, and optimize the model through the application of organizational and technical measures. The model evaluation is conducted through simulation in terms of energy consumption. The result shows that the proposed model ensures good data security at the cost of a slight increase in energy consumption at receiver and sender nodes, and energy consumption per bit, up to 2%, 7%, and 1.3%, respectively, due to overhead added for authentication in the network.

Keywords: agriculture; cryptography; public key infrastructure (PKI); security; wireless sensor networks (WSN).