Negative Refractive Index Metasurfaces for Enhanced Biosensing

Materials (Basel). 2010 Dec 23;4(1):1-36. doi: 10.3390/ma4010001.

Abstract

In this paper we review some metasurfaces with negative values of effective refractive index, as scaffolds for a new generation of surface plasmon polariton-based biological or chemical sensors. The electromagnetic properties of a metasurface may be tuned by its full immersion into analyte, or by the adsorption of a thin layer on it, both of which change its properties as a plasmonic guide. We consider various simple forms of plasmonic crystals suitable for this purpose. We start with the basic case of a freestanding, electromagnetically symmetrical plasmonic slab and analyze different ultrathin, multilayer structures, to finally consider some two-dimensional "wallpaper" geometries like split ring resonator arrays and fishnet structures. A part of the text is dedicated to the possibility of multifunctionalization where a metasurface structure is simultaneously utilized both for sensing and for selectivity enhancement. Finally we give an overview of surface-bound intrinsic electromagnetic noise phenomena that limits the ultimate performance of a metasurfaces sensor.

Keywords: artificial nanomembranes; biosensors; chemical sensors; long range surface plasmons polaritons; optical metamaterials; plasmonics.

Publication types

  • Review