Smoothed particle hydrodynamics-based numerical investigation on sessile, oscillating droplets

Philos Trans A Math Phys Eng Sci. 2011 Jun 28;369(1945):2565-73. doi: 10.1098/rsta.2011.0077.

Abstract

Forced oscillations in sessile droplets can be exploited in electrowetting mixing of fluid fractions. The necessary complex flows and large shape deformations require a numerical investigation of fluid dynamics in the transient regime. We provide a means to characterize oscillations qualitatively and quantitatively with the goal to examine and to classify flow patterns occurring inside. A superposition of different harmonic excitation patterns gives the possibility to control the convective flow. In this investigation, we apply a generic and accurate multi-phase smoothed particle hydrodynamics model to a two-dimensional three-phase flow and consider an oscillating droplet sitting on a substrate and immersed in a fluidic phase. These vibrations are investigated in two ways: the analysis of a step response due to an abrupt change of the contact angle is applied to identify the resonance frequencies. Secondly, the time evolution of the shape of the droplet in terms of harmonic functions is determined. Their amplitudes are examined in the time and frequency domain. This gives the possibility to relate resonance frequencies to mode shapes and to detect a coupling between them. Our approach is successfully applied to different numerical case studies.