PyVaporation: A Python Package for Studying and Modelling Pervaporation Processes

Membranes (Basel). 2022 Aug 15;12(8):784. doi: 10.3390/membranes12080784.

Abstract

PyVaporation-a freely available Python package with an open-source code for modelling and studying pervaporation processes-is introduced. The theoretical background of the solution, its applicability and limitations are discussed. The usability of the package is evaluated using various examples of working with and modelling experimental data. A general equation for the representation of a component's permeance as a function of feed composition, temperature and initial feed composition is proposed and implemented in the developed package. The suggested general permeance equation may be used for the description of an extremal character of permeance as a function of process temperature and feed composition, allowing the description of processes with a high degree of non-ideality. The application of the package allowed modelling experimental points of various sets of hydrophilic pervaporation data and data on membrane performance from independent sources with a relative root mean square deviation of not more than 9% for flux and not more than 5% for a separated mixture concentration. The application of the facilitated parameter approach allowed the prediction of the components' permeance as a function of feed concentration at various initial feed concentrations with a relative root mean square error of 3-26%. The package was proven useful for modelling isothermal and adiabatic time and length-dependent pervaporation processes. The comparison of the models obtained with PyVaporation with models provided in the literature indicated similar accuracy of the obtained results, thereby proving the applicability of the developed package.

Keywords: non-ideal transport; permeance equation; process modelling.

Grants and funding

This research received no external funding.