Modeling economic losses and greenhouse gas emissions reduction during the COVID-19 pandemic: Past, present, and future scenarios for Italy

Econ Model. 2022 May:110:105807. doi: 10.1016/j.econmod.2022.105807. Epub 2022 Mar 1.

Abstract

Unprecedented nationwide lockdowns were adopted because of the COVID-19 pandemic. Understanding the socioeconomic impact of the past and future restrictions while assessing the resilience of a local economy emerged as a worldwide necessity. To predict the economic and environmental effects of the lockdowns, we propose a methodology based on the well-established input-output inoperability model, using Italy as a case study. By reconstructing the 2020 restrictions, we analyzed the economic losses and greenhouse gas emissions reductions, identifying the most economically impacted sectors because of the restrictions and the sectoral interdependencies and those avoiding most air emissions. We constructed four partial-lockdown scenarios by minimizing the economic losses for increasing restrictions to highlight the model's utility as a tool for policymaking. By revealing the most interconnected and, thus, crucial sectors, the simulated scenarios showcase how the restrictions can be selected to avoid sudden and unpredicted economic damage.

Keywords: COVID-19; Dynamic input output; Greenhouse gas; Inoperability; Input output; Macroeconomic industrial structure.