Natural TiO2-Nanoparticles in Soils: A Review on Current and Potential Extraction Methods

Crit Rev Anal Chem. 2020 Oct 15:1-21. doi: 10.1080/10408347.2020.1823812. Online ahead of print.

Abstract

The monitoring of anthropogenic TiO2-nanoparticles in soils is challenged by the knowledge gap on their characteristics of the large natural TiO2-nanoparticle pool. Currently, no efficient method is available for characterizing natural TiO2-nanoparticles in soils without an extraction procedure. Considering the reported diversity of extraction methods, the following article reviews and discusses their potential for TiO2 from soils, focusing on the selectivity and the applicability to complex samples. It is imperative to develop a preparative step reducing analytical interferences and producing a stable colloidal dispersion. It is suggested that an oxidative treatment, followed by alkaline conditioning and the application of dispersive agents, achieve such task. This enables the further separation and characterization through size or surface-based separation (i.e., hydrodynamic fractionation methods, filtration or sequential centrifugation). Meanwhile, cloud point extraction, gel electrophoresis, and electrophoretic deposition have been studied on various nanoparticles but not on TiO2-nanoparticles. Furthermore, industrially applied methods in, for example, kaolin processing (flotation and flocculation) are interesting but require further improvements on terms of selectivity and applicability to soil samples. Overall, none of the current extraction methods is sufficient toward TiO2; however, further optimization or combination of orthogonal techniques could help reaching a fair selectivity toward TiO2.

Keywords: Titanium dioxide; characterization; extraction; nanoparticles; soils.