A Preliminary Prototype High-Speed Feedback Control of an Artificial Cochlear Sensory Epithelium Mimicking Function of Outer Hair Cells

Micromachines (Basel). 2020 Jun 29;11(7):644. doi: 10.3390/mi11070644.

Abstract

A novel feedback control technique for the local oscillation amplitude in an artificial cochlear sensory epithelium that mimics the functions of the outer hair cells in the cochlea is successfully developed and can be implemented with a control time on the order of hundreds of milliseconds. The prototype artificial cochlear sensory epithelium was improved from that developed in our previous study to enable the instantaneous determination of the local resonance position based on the electrical output from a bimorph piezoelectric membrane. The device contains local patterned electrodes deposited with micro electro mechanical system (MEMS) technology that is used to detect the electrical output and oscillate the device by applying local electrical stimuli. The main feature of the present feedback control system is the principle that the resonance position is recognized by simultaneously measuring the local electrical outputs of all of the electrodes and comparing their magnitudes, which drastically reduces the feedback control time. In this way, it takes 0.8 s to control the local oscillation of the device, representing the speed of control with the order of one hundred times relative to that in the previous study using the mechanical automatic stage to scan the oscillation amplitude at each electrode. Furthermore, the intrinsic difficulties in the experiment such as the electrical measurement against the electromagnetic noise, adhesion of materials, and fatigue failure mechanism of the oscillation system are also shown and discussed in detail based on the many scientific aspects. The basic knowledge of the MEMS fabrication and the experimental measurement would provide useful suggestions for future research. The proposed preliminary prototype high-speed feedback control can aid in the future development of fully implantable cochlear implants with a wider dynamic range.

Keywords: cochlear implant; feedback control; fully implantable device; outer hair cell; piezoelectric material; sensorineural hearing loss.