Perpendicularly oriented sub-10-nm block copolymer lamellae by atmospheric thermal annealing for one minute

Sci Rep. 2016 Jan 19:6:19481. doi: 10.1038/srep19481.

Abstract

The directed self-assembly (DSA) of block co-polymers (BCPs) can realize next-generation lithography for semiconductors and a variety of soft materials. It is imperative to simultaneously achieve many requirements such as a high resolution, orientation control of micro-domains, etch selectivity, rapid and mild annealing, a low cost, and compatibility with manufacturing for developing suitable BCPs. Here, we describe a new design for modified polysiloxane-based BCPs targeted for sub-10-nm-wide lines, which are able to form perpendicularly oriented lamellar structures in thin films. The hydroxyl groups in the side chains introduced in the polysiloxane block provide a good balance with the polystyrene surface free energy, thereby leading to the perpendicular orientation. Moreover, this orientation can be completed in only one minute at 130 °C in an air atmosphere. Oxygen plasma etching for the thin films results in the achievement of a line width of 8.5 nm.

Publication types

  • Research Support, Non-U.S. Gov't