First Report of Seedling Blight of Oat (Avena sativa) Caused by Microdochium nivale in China

Plant Dis. 2020 Oct 7. doi: 10.1094/PDIS-10-19-2139-PDN. Online ahead of print.

Abstract

Oat (Avena sativa) is extensively planted as a fodder crop on the vast ranges of northern and northwestern China, and it has become an important supplementary feed for grazing livestock (Yang et al. 2010). Microdochium nivale has been reported associated with seedling blight in many temperate regions (Imathiu et al. 2010) and the damage can result in serious loss of oat production. In August 2018, a serious seedling blight of oat (cv. Baiyan 7; about 30-day-old) was observed in the field in Shandan County, Zhangye City, Gansu Province (38.22° N, 101.22° E). More than 20% of oat plants were severely affected. Symptoms included leaf chlorosis and wilt. The root systems of infected plants were black and severely rotted, often with only a small amount of fine root remaining after removal from the soil. Twenty isolations were made from blackened roots on potato dextrose agar (PDA) and five isolations (TM-1, TM-2, TM-3, TM-4 and TM-5) were further purified by a single-spore method (Choi et al. 1999). Each isolate was identical based on preliminary molecular analyses of their DNA sequences of ITS by blast in the NCBI GenBank. The representative isolate TM-2 was selected for sequencing of the RNA polymerase II subunit (RPB2) gene. The isolated colonies were grown on PDA and formed colonies of approximately 62 mm (diameter) in 5 days at 25 ± 1 °C. Colonies exhibited entire margins, the color varied from white to pale yellow, and the sparse aerial mycelium were villous-floccose and cottony. The conidia were falcate, straight to curved, apex pointed or obtuse to subacute, lacking basal differentiation, 0-3-septate, most one-septate, 2.2 to 3.1 × 12.3 to 22.6μm (av.= 2.8 ×17.6; n=50). These morphological characteristics were consistent with previous descriptions of Microdochium (Zhang et al. 2010). Molecular identity was confirmed by sequencing partial sequences of ITS gene (ITS1 and ITS4 primers) (White et al. 1990) and RPB2 regions (RPB2-5f2 and RPB2-7cr) (O'Donnell et al. 2010). Sequences were deposited in GenBank under accessions MN428647 (RPB2) and MN428646 (ITS). Blast search revealed that both of the ITS and RPB2 sequences to be 99% similar to the corresponding sequences of M. nivale(CBS 116205) accession numbers KP859008.1 and KP859117.1. For pathogenicity tests, millet seed-based inoculum of M. nivale was prepared using a modified procedure of Fang et al. (2011). Three-week-old healthy oat seedlings of cv. Baiyan 7 were transplanted into potting mix containing millet seed-based inoculum of M. nivale at a rate of 3%. Control seedlings for comparison were transplanted into pots containing uninoculated potting mix. After 10 days, all the inoculated plants had developed seedling blight symptoms and that were similar to those observed in the field; while control plants remained healthy. The pathogen was reisolated from inoculated plants and identified as M. nivale based on morphological characteristics and the molecular methods described above. To our knowledge, this is the first report of seedling blight of oat caused by M. nivale in China.

Keywords: Causal Agent; Crop Type; Field crops; Fungi; Pathogen detection; Subject Areas.