EMG-Free Monitorization of the Acoustic Startle Reflex with a Mobile Phone: Implications of Sound Parameters with Posture Related Responses

Sensors (Basel). 2020 Oct 22;20(21):5996. doi: 10.3390/s20215996.

Abstract

(1) Background: Acute acoustic (sound) stimulus prompts a state of defensive motivation in which unconscious muscle responses are markedly enhanced in humans. The orbicularis oculi (OO) of the eye is an easily accessed muscle common for acoustic startle reaction/response/reflex (ASR) investigations and is the muscle of interest in this study. Although the ASR can provide insights about numerous clinical conditions, existing methodologies (Electromyogram, EMG) limit the usability of the method in real clinical conditions. (2) Objective: With EMG-free muscle recording in mind, our primary aim was to identify and investigate potential correlations in the responses of individual and cooperative OO muscles to various acoustic stimuli using a mobile and wire-free system. Our secondary aim was to investigate potential altered responses to high and also relatively low intensity acoustics at different frequencies in both sitting and standing positions through the use of biaural sound induction and video diagnostic techniques and software. (3) Methods: This study used a mobile-phone acoustic startle response monitoring system application to collect blink amplitude and velocity data on healthy males, aged 18-28 community cohorts during (n = 30) in both sitting and standing postures. The iPhone X application delivers specific sound parameters and detects blinking responses to acoustic stimulus (in millisecond resolution) to study the responses of the blinking reflex to acoustic sounds in standing and sitting positions by using multiple acoustic test sets of different frequencies and amplitudes introduced as acute sound stimuli (<0.5 s). The single acoustic battery of 15 pure-square wave sounds consisted of frequencies and amplitudes between 500, 1000, 2000, 3000, and 4000 Hz scales using 65, 90, and 105 dB (e.g., 3000 Hz_90 dB). (4) Results: Results show that there was a synchronization of amplitude and velocity between both eyes to all acoustic startles. Significant differences (p = 0.01) in blinking reaction time between sitting vs. standing at the high intensity (105 dB) 500 Hz acoustic test set was discovered. Interestingly, a highly significant difference (p < 0.001) in response times between test sets 500 Hz_105 dB and 4000 Hz_105 dB was identified. (5) Conclusions: To our knowledge, this is the first mobile phone-based acoustic battery used to detect and report significant ASR responses to specific frequencies and amplitudes of sound stimulus with corresponding sitting and standing conditions. The results from this experiment indicate the potential significance of using the specific frequency, amplitude, and postural conditions (as never before identified) which can open new horizons for ASR to be used for diagnosis and monitoring in numerous clinical and remote or isolated conditions.

Keywords: acoustic; blink; mobile; reaction; reflex; response; sound; startle.

MeSH terms

  • Acoustic Stimulation
  • Adolescent
  • Adult
  • Blinking
  • Cell Phone*
  • Electromyography
  • Humans
  • Male
  • Posture*
  • Reflex, Startle*
  • Young Adult