Mass-production and biomarker-based characterization of high-value Spirulina powder for nutritional supplements

Food Chem. 2020 Apr 4:325:126751. doi: 10.1016/j.foodchem.2020.126751. Online ahead of print.

Abstract

Mass-produced Spirulina powder was characterized based on biomarkers for quality assessment. Other Spirulina powder products for functional foods and animal feeds were used as controls. In this study, Spirulina platensis was mass-cultured in modified Spirulina medium using a dispersive two-ton scale reactor for 30 days. After processing, the Spirulina powder was evaluated using FE-SEM and XPS. In the extracts, chlorophylls were determined using TLC and Q-TOF. SDS-PAGE and DSC were used to analyze protein biomarkers and to monitor thermal stability. The powder presented a microscale distorted sphere. Zinc, iron and calcium were detected on the powder surface. In the extracts, chlorophylls-a, -b, and -c, allophycocyanin, and phycocyanin-C were detected. Despite the similar morphology of all Spirulina products, the mass-produced Spirulina powder showed prolonged protein stability in biochemical compositions. The results suggest that mass-produced Spirulina powder can be characterized using biomarker-based advanced techniques. This protocol can be extended to other microalgae.

Keywords: Biomarker; Mass-production; Spirulina powder.