Inhibitory and Facilitatory Cueing Effects: Competition between Exogenous and Endogenous Mechanisms

Vision (Basel). 2019 Aug 22;3(3):40. doi: 10.3390/vision3030040.

Abstract

Inhibition of return is characterized by delayed responses to previously attended locations when the cue-target onset asynchrony (CTOA) is long enough. However, when cues are predictive of a target's location, faster reaction times to cued as compared to uncued targets are normally observed. In this series of experiments investigating saccadic reaction times, we manipulated the cue predictability to 25% (counterpredictive), 50% (nonpredictive), and 75% (predictive) to investigate the interaction between predictive endogenous facilitatory (FCEs) and inhibitory cueing effects (ICEs). Overall, larger ICEs were seen in the counterpredictive condition than in the nonpredictive condition, and no ICE was found in the predictive condition. Based on the hypothesized additivity of FCEs and ICEs, we reasoned that the null ICEs observed in the predictive condition are the result of two opposing mechanisms balancing each other out, and the large ICEs observed with counterpredictive cueing can be attributed to the combination of endogenous facilitation at uncued locations with inhibition at cued locations. Our findings suggest that the endogenous activity contributed by cue predictability can reduce the overall inhibition observed when the mechanisms occur at the same location, or enhance behavioral inhibition when the mechanisms occur at opposite locations.

Keywords: attention; dynamic neural field model; inhibition of return; predictive cueing; saccadic responses; sensory adaptation.

Grants and funding