Determining spatio-temporal characteristics of coseismic travelling ionospheric disturbances (CTID) in near real-time

Sci Rep. 2021 Oct 21;11(1):20783. doi: 10.1038/s41598-021-99906-5.

Abstract

Earthquakes are known to generate ionospheric disturbances that are commonly referred to as co-seismic travelling ionospheric disturbances (CTID). In this work, for the first time, we present a novel method that enables to automatically detect CTID in ionospheric GNSS-data, and to determine their spatio-temporal characteristics (velocity and azimuth of propagation) in near-real time (NRT), i.e., less than 15 min after an earthquake. The obtained instantaneous velocities allow us to understand the evolution of CTID and to estimate the location of the CTID source in NRT. Furthermore, also for the first time, we developed a concept of real-time travel-time diagrams that aid to verify the correlation with the source and to estimate additionally the propagation speed of the observed CTID. We apply our methods to the Mw7.4 Sanriku earthquake of 09/03/2011 and the Mw9.0 Tohoku earthquake of 11/03/2011, and we make a NRT analysis of the dynamics of CTID driven by these seismic events. We show that the best results are achieved with high-rate 1 Hz data. While the first tests are made on CTID, our method is also applicable for detection and determining of spatio-temporal characteristics of other travelling ionospheric disturbances that often occur in the ionosphere driven by many geophysical phenomena.