Synergistic Inhibition of Renal Fibrosis by Nintedanib and Gefitinib in a Murine Model of Obstructive Nephropathy

Kidney Dis (Basel). 2021 Jan;7(1):34-49. doi: 10.1159/000509670. Epub 2020 Aug 23.

Abstract

Background: Our recent studies demonstrated that both nintedanib, an FDA-approved quadruple kinase inhibitor, and gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, protect against obstructive kidney disease. It remains unknown whether they have a synergistic effect.

Methods: In this study, we investigated the effect of combined administration of nintedanib and gefitinib on renal fibrosis in a murine model of renal fibrosis induced by unilateral ureteral obstruction (UUO).

Results: Combined treatment with nintedanib and gefitinib after UUO resulted in a greater antifibrotic effect compared with their individual application. Mechanistically, administration of nintedanib blocked UUO-induced phosphorylation of multiple kinase receptors associated renal fibrosis, including platelet-derived growth factor receptors, fibroblast growth factor receptors, vascular endothelial growth factor receptors, and Src family kinase, while gefitinib inhibited EGFR phosphorylation. Their combination also exhibited a more pronounced effect in reducing expression of tissue inhibitors of metalloproteinase-2 (TIMP-2), increasing expression of matrix metalloproteinase-2 (MMP-2), and suppressing renal proinflammatory cytokine expression and macrophage infiltration in the injured kidney. Furthermore, simultaneous administration of nintedanib and gefitinib was more potent in inhibiting UUO-induced renal phosphorylation of signal transducer and activator of transcription-3 (STAT3), nuclear factor-κB, and Smad-3 compared with monotherapy. In cultured renal interstitial fibroblasts, cotreatment with these 2 inhibitors also had synergistic effects in abrogating transforming growth factor β1-induced activation of renal fibroblasts and phosphorylation of Akt, STAT3, and Smad3.

Conclusions: Combined application of nintedanib and gefitinib has a synergistic antifibrotic effect in the kidney and may hold translational potential for the treatment of chronic kidney disease.

Keywords: Gefitinib; Nintedanib; Receptor tyrosine kinases; Renal fibrosis; Unilateral ureteral obstruction.