Synthesis, spectral characterisation, biocidal investigation, in-silico and molecular docking studies of 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid derived triorganotin(IV) compounds

J Biomol Struct Dyn. 2024 Feb-Mar;42(4):1826-1845. doi: 10.1080/07391102.2023.2204160. Epub 2023 Apr 28.

Abstract

Three triorganotin(IV) compounds, R3Sn(L), with R = CH3 (1), n-C4H9 (2) and C6H5 (3), and LH = 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid, were prepared and confirmed by various techniques. A five-coordinate, distorted trigonal-bipyramidal geometry was elucidated for tin(IV) centres both in solution and solid states. An intercalation mode was confirmed for the compound SS-DNA interaction by UV-visible, viscometric techniques and molecular docking. MD simulation revealed stable binding of LH with SS-DNA. Anti-bacterial investigation revealed 2 to be generally the most potent, especially against Sa and Ab, i.e. having the lowest MIC values (≤0.25 μg/mL) compared to the standard anti-biotics vancomycin-HCl (MIC = 1 μg/mL) and colistin-sulphate (MIC = 0.25 μg/mL). Similarly, the anti-fungal profile shows 2 exhibits 100% inhibition against Ca and Cn fungal strains and has MIC values (≤0.25 μg/mL) comparatively lower than standard drug fluconazole (0.125 and 8 μg/mL for Ca and Cn, respectively). Compound 2 has the greatest activity with CC50 ≤ 25 μg/mL and HC50 > 32 μg/mL performed against HEC239 and RBC cell lines. The anti-cancer potential was assessed against the MG-U87 cell line, using cisplatin as the standard (133 µM), indicates 2 displays the greatest activity (IC50: 5.521 µM) at a 5 µM dose. The greatest anti-leishmanial potential was observed for 2 (87.75 at 1000 μg/mL) in comparison to amphotericin B (90.67). The biological assay correlates with the observed maximum of 89% scavenging activity exhibited by 2. The Swiss-ADME data publicised the screened compounds generally follow the rule of 5 of drug-likeness and have good bioavailability potential.

Keywords: DNA interaction; Triorganotin(IV) compounds; X-ray crystallography; biocidal investigation; in silico study.

MeSH terms

  • Butyric Acid
  • Cell Line
  • Computer Simulation
  • DNA* / chemistry
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation

Substances

  • Butyric Acid
  • DNA