Upscaling ground-based backpack gamma-ray spectrometry to spatial resolution of UAV-based gamma-ray spectrometry for system validation

J Environ Radioact. 2024 Mar:273:107382. doi: 10.1016/j.jenvrad.2024.107382. Epub 2024 Jan 23.

Abstract

Advances in the development of gamma-ray spectrometers have resulted in devices that are ideal for use in conjunction with the increasingly reliable systems of autonomously flying uncrewed aerial vehicles (UAVs) that have recently become available on the market. Airborne gamma-ray spectrometry (GRS) measurements have many different applications. Here, the technique is applied to a former uranium mining and processing site, which is characterized by relatively low specific activities and, hence, low count rates, requiring relatively large detectors and correspondingly big size UAVs. The future acceptance of the use of such UAV-based GRS systems for radionuclide mapping depends on their ability to measure absolute specific activities of natural radionuclides such as U-238 in near-surface soil that are consistent with the results of established and proven ground-based systems. To determine absolute specific activities on the ground, the gamma radiation data from airborne detectors must be corrected for attenuation caused by the flight altitude above ground. In recent years, mathematical procedures for altitude correction have been developed, that are specifically tailored to the working range of several tens of meters typical for UAVs. However, very limited experimental validation of these theoretical approaches is available. A very large dataset consisting of about 3000 UAV-based and 19,000 backpack-based measurements was collected at a low-grade uranium ore dump in Yangiabad, Uzbekistan. We applied different geostatistical interpolation methods to compare the data from both survey techniques by upscaling backpack data to airborne data. Compared to backpack systems, UAV-based systems have lower spatial resolution, so measurements average over larger areal units (or in geostatistical terminology: "spatial support"). Taking into account the change in spatial support, we illustrate that (1) the UAV-based measurements show good agreement with the upscaled backpack measurements and that (2) UAV surveys provide good delineation of contrasts of the relatively smooth U-238 specific activity distribution typical for former uranium mining and processing sites. We are able to show that the resolution of UAV-based systems is sufficient to map extended uranium waste facilities.

Keywords: (GRS); (UAV); Airborne gamma-ray spectrometry; Kriging; Uncrewed aerial vehicle; Upscaling; Uranium legacy sites; Variogram.

MeSH terms

  • Radiation Monitoring* / methods
  • Soil Pollutants, Radioactive* / analysis
  • Spectrometry, Gamma
  • Uranium* / analysis

Substances

  • Uranium-238
  • Uranium
  • Soil Pollutants, Radioactive