FPGA Modeling and Optimization of a SIMON Lightweight Block Cipher

Sensors (Basel). 2019 Feb 21;19(4):913. doi: 10.3390/s19040913.

Abstract

Security of sensitive data exchanged between devices is essential. Low-resource devices (LRDs), designed for constrained environments, are increasingly becoming ubiquitous. Lightweight block ciphers provide confidentiality for LRDs by balancing the required security with minimal resource overhead. SIMON is a lightweight block cipher targeted for hardware implementations. The objective of this research is to implement, optimize, and model SIMON cipher design for LRDs, with an emphasis on energy and power, which are critical metrics for LRDs. Various implementations use field-programmable gate array (FPGA) technology. Two types of design implementations are examined: scalar and pipelined. Results show that scalar implementations require 39% less resources and 45% less power consumption. The pipelined implementations demonstrate 12 times the throughput and consume 31% less energy. Moreover, the most energy-efficient and optimum design is a two-round pipelined implementation, which consumes 31% of the best scalar's implementation energy. The scalar design that consumes the least energy is a four-round implementation. The scalar design that uses the least area and power is the one-round implementation. Balancing energy and area, the two-round pipelined implementation is optimal for a continuous stream of data. One-round and two-round scalar implementations are recommended for intermittent data applications.

Keywords: FPGA; SIMON; block cipher; cipher; encryption; energy; lightweight block cipher; low-resource devices; power; security.