Biochar Properties Influencing Greenhouse Gas Emissions in Tropical Soils Differing in Texture and Mineralogy

J Environ Qual. 2016 Sep;45(5):1509-1519. doi: 10.2134/jeq2015.10.0532.

Abstract

The ability of biochar applications to alter greenhouse gases (GHGs) (CO, CH, and NO) has been attracting research interest. However, inconsistent published results necessitate further exploration of potential influencing factors, including biochar properties, biochar rates, soil textures and mineralogy, and their interactions. Two short-term laboratory incubations were conducted to evaluate the effects of different biochars: a biochar with low ash (2.4%) and high-volatile matter (VM) (35.8%) contents produced under low-temperature (350°C) traditional kiln and a biochar with high ash (3.9%) and low-VM (14.7%) contents produced with a high-temperature (800°C) Flash Carbonization reactor and different biochar rates (0, 2, and 4% w/w) on the GHG emissions in a loamy-sand Ultisol and a silty-clay-loam Oxisol. In the coarse-textured, low-buffer Ultisol, cumulative CO and CH emissions increased with increasing VM content of biochars; however, CO emission sharply decreased at 83 μg VM g soil. In the fine-textured, high-buffer Oxisol, there were significant positive effects of VM content on cumulative CO emission without suppression effects. Regarding cumulative NO emission, there were significant positive effects in the Mn-rich Oxisol. Ash-induced increases in soil pH had negative effects on all studied GHG emissions. Possible mechanisms include the roles biochar VM played as microbial substrates, a source of toxic compounds and complexing agents reducing the toxicity of soil aluminum and manganese, and the role of biochar ash in increasing soil pH affecting GHG emissions in these two contrasting soils.

MeSH terms

  • Charcoal / chemistry*
  • Greenhouse Gases*
  • Soil

Substances

  • Greenhouse Gases
  • Soil
  • biochar
  • Charcoal