A random subspace ensemble classification model for discrimination of power quality events in solar PV microgrid power network

PLoS One. 2022 Jan 27;17(1):e0262570. doi: 10.1371/journal.pone.0262570. eCollection 2022.

Abstract

This study proposes SVM based Random Subspace (RS) ensemble classifier to discriminate different Power Quality Events (PQEs) in a photovoltaic (PV) connected Microgrid (MG) model. The MG model is developed and simulated with the presence of different PQEs (voltage and harmonic related signals and distinctive transients) in both on-grid and off-grid modes of MG network, respectively. In the pre-stage of classification, the features are extracted from numerous PQE signals by Discrete Wavelet Transform (DWT) analysis, and the extracted features are used to learn the classifiers at the final stage. In this study, first three Kernel types of SVM classifiers (Linear, Quadratic, and Cubic) are used to predict the different PQEs. Among the results that Cubic kernel SVM classifier offers higher accuracy and better performance than other kernel types (Linear and Quadradic). Further, to enhance the accuracy of SVM classifiers, a SVM based RS ensemble model is proposed and its effectiveness is verified with the results of kernel based SVM classifiers under the standard test condition (STC) and varying solar irradiance of PV in real time. From the final results, it can be concluded that the proposed method is more robust and offers superior performance with higher accuracy of classification than kernel based SVM classifiers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Neural Networks, Computer
  • Power Plants*
  • Solar Energy*
  • Support Vector Machine
  • Wavelet Analysis

Grants and funding

This work was supported by the Geran Putra Berimpak from the Universiti Putra Malaysia (GPB UPM) under Grant UPM/800-3/3/1/GPB/2019/9671700. The grant was received by Dr Mohammad Lutfi Othman. The funder had role in designing of novel classifier and helped in drafting the novel methodology in the manuscript.