Setting the Stage for Insulin Granule Dysfunction during Type-1-Diabetes: Is ER Stress the Culprit?

Biomedicines. 2022 Oct 25;10(11):2695. doi: 10.3390/biomedicines10112695.

Abstract

Type-1-diabetes (T1D) is a multifactorial disorder with a global incidence of about 8.4 million individuals in 2021. It is primarily classified as an autoimmune disorder, where the pancreatic β-cells are unable to secrete sufficient insulin. This leads to elevated blood glucose levels (hyperglycemia). The development of T1D is an intricate interplay between various risk factors, such as genetic, environmental, and cellular elements. In this review, we focus on the cellular elements, such as ER (endoplasmic reticulum) stress and its consequences for T1D pathogenesis. One of the major repercussions of ER stress is defective protein processing. A well-studied example is that of islet amyloid polypeptide (IAPP), which is known to form cytotoxic amyloid plaques when misfolded. This review discusses the possible association between ER stress, IAPP, and amyloid formation in β-cells and its consequences in T1D. Additionally, ER stress also leads to autoantigen generation. This is driven by the loss of Ca++ ion homeostasis. Imbalanced Ca++ levels lead to abnormal activation of enzymes, causing post-translational modification of β-cell proteins. These modified proteins act as autoantigens and trigger the autoimmune response seen in T1D islets. Several of these autoantigens are also crucial for insulin granule biogenesis, processing, and release. Here, we explore the possible associations between ER stress leading to defects in insulin secretion and ultimately β-cell destruction.

Keywords: ER stress; amyloids; autoantigens; insulin secretory granules; type-1-diabetes.

Publication types

  • Review