Use of Recombinant Mucin Glycoprotein to Assess the Interaction of the Gastric Pathogen Helicobacter pylori with the Secreted Human Mucin MUC5AC

Bioengineering (Basel). 2017 Apr 15;4(2):34. doi: 10.3390/bioengineering4020034.

Abstract

There is intense interest in how bacteria interact with mucin glycoproteins in order to colonise mucosal surfaces. In this study, we have assessed the feasibility of using recombinant mucin glycoproteins to study the interaction of the gastric pathogen Helicobacter pylori with MUC5AC, a mucin which the organism exhibits a distinct tropism for. Stable clonal populations of cells expressing a construct encoding for a truncated version of MUC5AC containing N- and C-termini interspersed with two native tandem repeat sequences (N + 2TR + C) were generated. Binding of H. pylori to protein immunoprecipitated from cell lysates and supernatants was assessed. High molecular weight mucin could be detected in both cell lysates and supernatants of transfected cells. Recombinant protein formed high molecular weight oligomers, was both N and O glycosylated, underwent cleavage similar to native MUC5AC and was secreted from the cell. H. pylori bound better to secreted mucin than intracellular mucin suggesting that modifications on extracellular MUC5AC promoted binding. Lectin analysis demonstrated that secreted mucin was differentially glycosylated compared to intracellular mucin. H. pylori also bound to a recombinant C-terminus MUC5AC protein, but binding to this protein did not inhibit binding to the N + 2TR + C protein. This study demonstrates the feasibility of using recombinant mucins containing tandem repeat sequences to assess microbial mucin interactions.

Keywords: Helicobacter pylori; MUC5AC; gastric cells; glycosylation; protein secretion; secreted mucin.