Dominant flood types in mountains catchments: Identification and change analysis for the landscape planning

J Environ Manage. 2024 Feb:351:119905. doi: 10.1016/j.jenvman.2023.119905. Epub 2023 Dec 29.

Abstract

The classification of floods may be a supporting tool for decision-makers in regard to water management, including flood protection. The main objective of this work is the classification of flood generation mechanisms in 28 catchments of the upper Vistula basin. A significant innovation in this study lies in the utilization of decision trees for flood classification. The methodology has so far been applied in the Alpine region. The analysis reveals that peak daily precipitation in the catchments mainly occurs in summer, particularly from June to August. Maximal daily snowmelt typically happens at the end of winter (March to April) and occasionally in November. Winter peaks are observed in March to April and, in some areas, in November to December, while summer peaks occur in May and, in specific catchments, in October. Higher peak flows for annual floods are noted in March to April and June to August. Most annual floods in the Upper Vistula basin are classified as Rain-on-Snow Floods (RoSFs) or Lowland River Floods (LRFs). LRFs contribute from 19% to almost 72%, while RoSFs range from 18% to 75%. In Season 1 (summer), most seasonal floods are identified as LRFs (51%-100%), with very few as RoSFs (0%-46.9%). In Season 2 (winter), the opposite pattern is observed, with most RoSFs (48.4%-97.9%) and fewer LRFs (0%-20.6%). While there are changes in flood patterns, they are not statistically significant. Conducted studies and obtained results can be useful for the preparation of flood prevention documentation and for flood management in general.

Keywords: Climatic and geographic factors; Decision trees classification; Floods; Genetic types; Hydrological processes.

MeSH terms

  • Floods*
  • Rain*
  • Rivers
  • Snow
  • Water

Substances

  • Water