Matrix-Assisted Cell Transplantation for the Treatment of Limbal Stem Cell Deficiency in a Rabbit Model

Biomedicines. 2024 Jan 3;12(1):101. doi: 10.3390/biomedicines12010101.

Abstract

With the development of regenerative medicine in ophthalmology, the identification of cells with high proliferative potential in the limbal area has attracted the attention of ophthalmologists and offered a new option for treatment in clinical practice. Limbal stem cell deficiency (LSCD) is an identified eye disease with a difficult and negative outcome, for which the traditional treatment is keratoplasty. This study sought to evaluate the efficacy of matrix-assisted cell transplantation consisting of in vitro-cultured autologous limbal stem cells (LSCs) and type I collagen for the treatment of LSCD in rabbits. LSCD was induced in 10 rabbits by a combination of mechanical limbectomy and alkali burns. Cells were cultured on a plate for 14 days before being transferred to a collagen-based matrix for another 7 days. Rabbits were divided into two groups as follows: the experimental group (five rabbits) received matrix-assisted cell transplantation, while the control group (five rabbits) received only conservative therapy with anti-inflammatory eye drops. During the postoperative period, all rabbits were examined using slit-lamp biomicroscopy with photo-registration and fluorescent staining, impression cytology and anterior segment optical coherence tomography (AS-OCT). Rabbits were euthanized at 30 and 120 days, and their corneas were processed for histology and immunohistochemistry. As a consequence, rabbits in the experimental group demonstrated the restoration of the corneal epithelium and transparency without epithelial defects. Moreover, goblet cells were absent in the central zone of the corneal epithelium. In conclusion, our new method of treatment enhanced the corneal surface and is an effective method of treatment for LSCD in rabbits.

Keywords: collagen; limbal stem cell; limbal stem cell deficiency; matrix-assisted cell transplantation.