Estimation of Wave Period from Pitch and Roll of a Lidar Buoy

Sensors (Basel). 2021 Feb 12;21(4):1310. doi: 10.3390/s21041310.

Abstract

This work proposes a new wave-period estimation (L-dB) method based on the power-spectral-density (PSD) estimation of pitch and roll motional time series of a Doppler wind lidar buoy under the assumption of small angles (±22 deg) and slow yaw drifts (1 min), and the neglection of translational motion. We revisit the buoy's simplified two-degrees-of-freedom (2-DoF) motional model and formulate the PSD associated with the eigenaxis tilt of the lidar buoy, which was modelled as a complex-number random process. From this, we present the L-dB method, which estimates the wave period as the average wavelength associated to the cutoff frequency span at which the spectral components drop off L decibels from the peak level. In the framework of the IJmuiden campaign (North Sea, 29 March-17 June 2015), the L-dB method is compared in reference to most common oceanographic wave-period estimation methods by using a TriaxysTM buoy. Parametric analysis showed good agreement (correlation coefficient, ρ = 0.86, root-mean-square error (RMSE) = 0.46 s, and mean difference, MD = 0.02 s) between the proposed L-dB method and the oceanographic zero-crossing method when the threshold L was set at 8 dB.

Keywords: Blackman–Tukey; IMU; PSD; buoy; lidar; period; pitch; roll; tilt; wave.