Unmasking Cybercrime with Artificial-Intelligence-Driven Cybersecurity Analytics

Sensors (Basel). 2023 Jul 11;23(14):6302. doi: 10.3390/s23146302.

Abstract

Cybercriminals are becoming increasingly intelligent and aggressive, making them more adept at covering their tracks, and the global epidemic of cybercrime necessitates significant efforts to enhance cybersecurity in a realistic way. The COVID-19 pandemic has accelerated the cybercrime threat landscape. Cybercrime has a significant impact on the gross domestic product (GDP) of every targeted country. It encompasses a broad spectrum of offenses committed online, including hacking; sensitive information theft; phishing; online fraud; modern malware distribution; cyberbullying; cyber espionage; and notably, cyberattacks orchestrated by botnets. This study provides a new collaborative deep learning approach based on unsupervised long short-term memory (LSTM) and supervised convolutional neural network (CNN) models for the early identification and detection of botnet attacks. The proposed work is evaluated using the CTU-13 and IoT-23 datasets. The experimental results demonstrate that the proposed method achieves superior performance, obtaining a very satisfactory success rate (over 98.7%) and a false positive rate of 0.04%. The study facilitates and improves the understanding of cyber threat intelligence, identifies emerging forms of botnet attacks, and enhances forensic investigation procedures.

Keywords: artificial intelligence; cyber criminality; cyber threat intelligence; cybersecurity analytics; digital forensics investigation.

Grants and funding

This research is supported by the United Arab Emirates University (UAEU) under grant number 12R005.