Electroless deposition of Ni-P-nano-ZrO2 composite coatings in the presence of various types of surfactants

J Colloid Interface Sci. 2012 Jul 1;377(1):362-7. doi: 10.1016/j.jcis.2012.03.049. Epub 2012 Mar 23.

Abstract

Ni-P-nano-ZrO(2) coatings were produced using the electroless deposition technique. To prevent agglomeration of zirconia nanoparticles in the plating bath, various surfactant additives (anionic, cationic, and nonionic) were used. The most stable bath was obtained with the addition of dodecyltrimethylammonium bromide (DTAB). The impact of this surfactant on the deposition rate, coating composition, and topography, as well as ζ potential of particles, was examined. Surface morphology and composition of the Ni-P-nano-ZrO(2) composite coatings was analyzed by various techniques including scanning electron microscopy (SEM) equipped with in situ energy-dispersive X-ray (EDX) spectroscopy. Coatings with a clearly greater amount of zirconia (21.88-22.10 wt.%) were obtained from baths containing DTAB in concentrations equal to or above its critical micelle concentration (cmc). For these surfactant concentrations, the reduction of Ni and P content was observed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Nanocomposites / chemistry*
  • Nickel / chemistry*
  • Particle Size
  • Phosphorus / chemistry*
  • Quaternary Ammonium Compounds / chemistry*
  • Surface Properties
  • Surface-Active Agents / chemistry*
  • Zirconium / chemistry*

Substances

  • Quaternary Ammonium Compounds
  • Surface-Active Agents
  • Phosphorus
  • Nickel
  • Zirconium
  • dodecyltrimethylammonium
  • zirconium oxide