Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture

Sci Total Environ. 2019 Apr 15:661:393-406. doi: 10.1016/j.scitotenv.2019.01.009. Epub 2019 Jan 16.

Abstract

Flooding may damage important transportation infrastructures, such as roads, railways and bridges, which need to be well planned and designed to be able to withstand current and possible future climate-driven increases in flood frequencies and magnitudes. This study develops a novel approach to predictive statistical modelling of the probability of flooding at major road-stream intersection sites, where water, sediment and debris can accumulate and cause failure of drainage facilities and associated road damages. Two areas in south-west Sweden, affected by severe floods in August 2014, are used in representative case studies for this development. A set of physical catchment-descriptors (PCDs), characterizing key aspects of topography, morphology, soil type, land use, hydrology (precipitation and soil moisture) and sediment connectivity in the water- and sediment-contributing catchments, are used for the predictive flood modelling. A main novel contribution to such modelling is to integrate the spatiotemporal characteristics of remotely-sensed soil moisture in indices of sediment connectivity (IC), thereby also allowing for investigation of the role of soil moisture in the flood probability for different road-stream intersections. The results suggest five categories of PCDs as especially important for flood probability quantification and identification of particularly flood-prone intersections along roads (railways, etc.) These include: channel slope at the road-stream intersection and average elevation, soil properties (mainly percentage of till), land use cover (mainly percentage of urban areas), and a sediment connectivity index that considers soil moisture in addition to morphology over the catchment.

Keywords: Flood hazard; Multivariate statistical model; Physical catchment-descriptors; Transport infrastructure.