NiAl-Cr-Mo Medium Entropy Alloys: Microstructural Verification, Solidification Considerations, and Sliding Wear Response

Materials (Basel). 2020 Aug 5;13(16):3445. doi: 10.3390/ma13163445.

Abstract

A series of NiAl-Cr-Mo systems were produced and assessed as far as their microstructure and their sliding wear resistance is concerned. The NiAl content was kept constant and seven compositions of Cr-Mo were tested, namely, 40Cr-0Mo, 30Cr-10Mo, 25Cr-15Mo, 20Cr-20Mo, 15Cr-25Mo, 10Cr-30Mo, and 0Cr-40Mo. It was observed that most of the systems contained primary phases, eutectic microconstituents, and, occasionally, intermetallic phases as the outcome of peritectic reactions. The extent and the nature of all these microstructural features was proved to be affected by the Cr/Mo relative ratio, and an attempt was conducted in order to explain the microstructural features based on solidification and other related phenomena. It was observed that the increase of the relative Mo/Cr ratio led to a significant restriction/elimination of the eutectic microconstituent. The sliding wear response of the produced system seems to diverge from the classical sliding wear laws of Archard and is based on multiple factors such as the nature of the oxide phases being formed upon sliding, the nature and the extend of the intermetallic phases being formed upon solidification, and the integrity and rigidity of the primary phases-last to solidify areas interfacial region and the factors that may influence this integrity.

Keywords: high-entropy alloys; sliding wear; solidification.