Treatment and Companion Diagnostics of Lower Back Pain Using Self-Controlled Energo-Neuroadaptive Regulator (SCENAR) and Passive Microwave Radiometry (MWR)

Diagnostics (Basel). 2022 May 12;12(5):1220. doi: 10.3390/diagnostics12051220.

Abstract

Evaluation of the effectiveness of treatment of nonspecific lower back pain (LBP) is currently largely based on the patient's subjective feelings. The purpose of this study was to use passive microwave radiometry (MWR) as a tool for assessing the effectiveness of various treatment methods in patients with acute and subacute nonspecific LBP. Patients with a pain assessment on a visual analogue scale (VAS) of 6 to 10 points were divided into two groups: Group I included patients with pharmacological, syndrome-oriented treatment (n = 30, age 54.9 ± 2.3 years); Group II included a combination of pharmacotherapy with self-controlled energy-neuroadaptive regulation (SCENAR) (n = 25, age 52.8 ± 2.5 years). The analysis showed that the addition of SCENAR therapy (Group II) significantly potentiated the analgesic effect at the stages of treatment, and after 3 weeks, this had increased by more than two times, by 1.3 points on the VAS. There was also a significant decrease in the maximum internal temperature and normalization of the gradient of internal and skin temperatures, and a decrease in thermo-asymmetry, as assessed by temperature fields. Thermal asymmetry visualization allows the identification of the area of pathological muscle spasm and/or inflammation in the projection of the vertebral-motor segment for the possible targeted use of treatment methods such as percutaneous electro neurostimulation, massage, manual therapy, diagnostic and treatment blocks, etc. The MWR method also avoids unnecessary radiation exposure.

Keywords: lower back pain; passive microwave radiometry (MWR); self-controlled energy-neuro-adaptive regulation; transcutaneous electrical neurostimulation (TENS).

Grants and funding

This research received no external funding.