Effective Platinum-Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell

Nanomaterials (Basel). 2020 Apr 13;10(4):742. doi: 10.3390/nano10040742.

Abstract

The behavior of supported alloyed and de-alloyed platinum-copper catalysts, which contained 14-27% wt. of Pt, was studied in the reactions of methanol electrooxidation (MOR) and oxygen electroreduction (ORR) in 0.1 M HClO4 solutions. Alloyed PtCux/C catalysts were prepared by a multistage sequential deposition of copper and platinum onto a Vulcan XC72 dispersed carbon support. De-alloyed PtCux-y/C catalysts were prepared by PtCux/C materials pretreatment in acid solutions. The effects of the catalysts initial composition and the acid treatment condition on their composition, structure, and catalytic activity in MOR and ORR were studied. Functional characteristics of platinum-copper catalysts were compared with those of commercial Pt/C catalysts when tested, both in an electrochemical cell and in H2/Air membrane-electrode assembly (MEA). It was shown that the acid pretreatment of platinum-copper catalysts practically does not have negative effect on their catalytic activity, but it reduces the amount of copper passing into the solution during the subsequent electrochemical study. The activity of platinum-copper catalysts in the MOR and the current-voltage characteristics of the H2/Air proton-exchange membrane fuel cell MEAs measured in the process of their life tests were much higher than those of the Pt/C catalysts.

Keywords: PEM FC; PtCu/C; catalyst activity; de-alloyed catalysts; durability; fuel cell life tests; methanol electrooxidation; oxygen electroreduction; platinum electrocatalyst.