Development of a Method for Detecting and Estimating Moniliophthora roreri Spore Loads Based on Spore Traps and qPCR

J Fungi (Basel). 2022 Dec 28;9(1):47. doi: 10.3390/jof9010047.

Abstract

Frosty pod rot, caused by Moniliophthora roreri, is the most damaging disease of cacao in Latin America and, to better comprehend its epidemiology, we must understand its dissemination and proliferation. However, we do not know how M. roreri spores loads fluctuate in time and space due to the lack of a reliable technique to quantify M. roreri spores in the fields. Therefore, we developed a method that relies on spore traps and qPCR to detect and quantify M. roreri spore loads. This study demonstrated that the qPCR protocol can detect down to 0.025 ng of M. roreri DNA and quantify between 0.006 ng and 60 ng. Moreover, it demonstrated that qPCR protocol can detect and quantify DNA extracted from spore suspension and spore traps containing at least 2.9 × 104 M. roreri spores. However, the variability of the estimates for spore samples was high. Finally, we described a spore-trap device designed to carry spore traps in the field. The qPCR protocol and spore-trap device here developed will help in the understanding of the M. roreri dissemination patterns since they can be used to assess the environmental loads of M. roreri spore in cacao fields.

Keywords: Theobroma cacao; frosty pod rot; moniliasis; qPCR; spore trap.