Long-term effect of carbohydrate reserves on growth and reproduction of Prosopis denudans (Fabaceae): implications for conservation of woody perennials

Conserv Physiol. 2016 Feb 10;4(1):cov068. doi: 10.1093/conphys/cov068. eCollection 2016.

Abstract

Prosopis denudans, an extreme xerophyte shrub, is consumed by ungulates and threatened by firewood gathering, because it is one of the preferred species used by Mapuche indigenous people of Patagonia. In a scenario of uncontrolled use of vegetation, it is very difficult to develop a conservation plan that jointly protects natural resources and its users. We performed a field experiment to assess the impact of defoliation on growth, reproduction and stores of a wild population of P. denudans. We imposed four levels of defoliation (removal of 100, 66, 33 and 0% of leaves) and evaluated the short- and long-term (3 years) effects of this disturbance. Seasonal changes in shoot carbohydrates suggested that they support leaf-flush and blooming. Severely defoliated individuals also used root reserves to support growth and leaf-flush after clipping. Vegetative growth was not affected by defoliation history. Leaf mass area increased after the initial clipping, suggesting the development of structural defenses. The depletion of root reserves at the end of the first year affected inflorescence production the following spring. We conclude that P. denudans shrubs could lose up to one-third of their green tissues without affecting growth or inflorescence production. The removal of a higher proportion of leaves will diminish stores, which in turn, will reduce or completely prevent blooming and, therefore, fruit production the following seasons. Very few studies integrate conservation and plant physiology, and we are not aware, so far, of any work dealing with long-term plant carbon economy of a long-lived perennial shrub as an applied tool in conservation. These results might help the development of management strategies that consider both the use and the conservation of wild populations of P. denudans.

Keywords: Leaf-flush; leaf mass area; non-structural carbohydrates; root carbohydrates; shoot carbohydrates; vegetative growth.