Analysis of Viscoelastic Behavior of Polypropylene/Carbon Nanotube Nanocomposites by Instrumented Indentation

Polymers (Basel). 2020 Oct 29;12(11):2535. doi: 10.3390/polym12112535.

Abstract

In this work, the viscoelastic behavior of polypropylene (PP)/multi-walled carbon nanotube (MWCNT) nanocomposites was investigated by indentation testing and phenomenological modeling. Firstly, indentation tests including two-cycle indentation were carried out on PP/MWCNT nanocomposite with three MWCNT loadings (1, 3 and 5 wt %). Next, the Maxwell-Voigt-Kelvin model coupled with two-cycle indentation tests was used to predict the shear creep compliance function and the equivalent indentation modulus. The indentation hardness and elastic modulus of the PP/MWCNT nanocomposites extracted based on the Oliver and Pharr method were compared with the equivalent indentation modulus predicted based on the Maxwell-Voigt-Kelvin mode. The experimental results indicated that the addition of nanotubes into the polypropylene has a positive effect on the micro-mechanical properties of PP/MWCNT nanocomposites. Indentation hardness and elastic modulus increased significantly with increasing MWCNT loading. The creep resistance at the micro-scale of the PP/MWCNT nanocomposites improved with the addition of MWCNTs, with creep displacement reduced by up to 20% by increasing the carbon nanotube loading from 1 to 5 wt %. The Maxwell-Voigt-Kelvin model with three and five Voigt-Kelvin units accurately predicted the shear creep function and its change with increasing MWCNT loading. However, the equivalent indentation modulus was found to be sensitive to the number of Voigt-Kelvin units: the more Voigt-Kelvin units, the better the model predicts the equivalent indentation modulus.

Keywords: carbon nanotubes; indentation; polypropylene; shear creep function.