Tailoring Chemical Absorption-Precipitation to Lower the Regeneration Energy of a CO2 Capture Solvent

ChemSusChem. 2024 Jan 22;17(2):e202300735. doi: 10.1002/cssc.202300735. Epub 2023 Nov 15.

Abstract

Solvent-based CO2 capture consumes significant amounts of energy for solvent regeneration. To improve energy efficiency, this study investigates CO2 fixation in a solid form through solvation, followed by ionic self-assembly-aided precipitation. Based on the hypothesis that CO3 2- ions may bind with monovalent metal ions, we introduced Na+ into an aqueous hexane-1,6-diamine solution where CO2 forms carbamate and bicarbonate. Then, Na+ ions in the solvent act as a seed for ionic self-assembly with diamine carbamate to form an intermediate ionic complex. The recurring chemical reactions lead to the formation of an ionic solid from a mixture of organic carbamate/carbonate and inorganic sodium bicarbonate (NaHCO3 ), which can be easily removed from the aqueous solvent through sedimentation or centrifugation and heated to release the captured CO2 . Mild-temperature heating of the solids at 80-150 °C causes decomposition of the solid CO2 -diamine-Na molecular aggregates and discharge of CO2 . This sorbent regeneration process requires 6.5-8.6 GJ/t CO2 . It was also found that the organic carbamate/carbonate solid, without NaHCO3 , contains a significant amount of CO2 , up to 6.2 mmol CO2 /g-sorbent, requiring as low as 2.9-5.8 GJ/t CO2 . Molecular dynamic simulations support the hypothesis of using Na+ to form relatively less stable, yet sufficiently solid, complexes for the least energy-intensive recovery of diamine solvents compared to bivalent carbonate-forming ions.

Keywords: CO2 fixation; Solid precipitation; Solvent regeneration; Solvent-based CO2 capture.