Removal of Zinc from Aqueous Solutions Using Lamellar Double Hydroxide Materials Impregnated with Cyanex 272: Characterization and Sorption Studies

Molecules. 2020 Mar 11;25(6):1263. doi: 10.3390/molecules25061263.

Abstract

Removal of heavy metals from wastewater is mandatory in order to avoid water pollution of natural reservoirs. In the present study, layered double hydroxide (LDH) materials were evaluated for removal of zinc from aqueous solutions. Materials thus prepared were impregnated with cyanex 272 using the dry method. These materials were characterized through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermal analysis. Batch shaking adsorption experiments were performed in order to examine contact time and extraction capacity in the removal process. Results showed that the equilibrium time of Zn (II) extraction is about 4 h for Mg2Al-CO3 and Mg2Al-CO3-cyanex 272, 6 h for Zn2Al-CO3, and 24 h for Zn2Al-CO3-cyanex 272. The experimental equilibrium data were tested for Langmuir, and Freundlich isotherm models. Correlation coefficients indicate that experimental results are in a good agreement with Langmuir's model for zinc ions. Pseudo-first, second-order, Elovich, and intraparticular kinetic models were used to describe kinetic data. It was determined that removal of Zn2+ was well-fitted by a second-order reaction kinetic. A maximum capacity of 280 mg/g was obtained by Zn2Al-CO3-cyanex 272.

Keywords: cyanex 272; impregnation; layered double hydroxides (LDH); sorption; zinc.

MeSH terms

  • Adsorption
  • Humans
  • Hydroxides / chemistry*
  • Kinetics
  • Models, Statistical
  • Phosphinic Acids / chemistry*
  • Wastewater / chemistry
  • Water Pollutants, Chemical / isolation & purification*
  • Water Purification / methods*
  • Zinc / isolation & purification*

Substances

  • Cyanex 272
  • Hydroxides
  • Phosphinic Acids
  • Waste Water
  • Water Pollutants, Chemical
  • Zinc