Building integrated diffusers' area ratio optimization

Sci Rep. 2024 Feb 24;14(1):4502. doi: 10.1038/s41598-024-55091-9.

Abstract

This paper presents an investigation into the effect of area ratio parameter of diffusers on its energy output through power coefficient Cp. This parameter has effect both on diffusers' energy yield, besides diffuser's size for architectural integration prospects. A systematic increase in diffusers area ratio is adopted following standardized diffuser profile presented by NACA 1244 aerofoil. A series of area ratios were investigated (i.e., 1.25, 1.5, 1.75, 2, 2.5, 3 and 3.5). Area ratio of 1.5 (i.e., outlet/inlet, 0.75 m/0.50 m) exhibited the highest power coefficient Cp of 4.2, in addition to achieving highest resulting velocity of 25.8 m/s under incident velocity of 16m/s. Considerable wind separation inside inner walls of diffusers occurred from area ratio 1.75 onwards, which impacted resulting velocities. Simulations performed with ANSYS CFD Academic to standalone diffusers. A series of incident velocities employed from 1 to 16 m/s that resulted in velocity increase by 120-156% respectively.

Keywords: Building integrated diffusers; Diffuser area ratio; Diffuser optimization; Diffuser sizing; Wind energy augmentation; Wind energy optimization in buildings.