Effect of O-side-chain-lipopolysaccharide chemistry on metal binding

Appl Environ Microbiol. 1999 Feb;65(2):489-98. doi: 10.1128/AEM.65.2.489-498.1999.

Abstract

Pseudomonas aeruginosa PAO1 produces two chemically distinct types of lipopolysaccharides (LPSs), termed A-band LPS and B-band LPS. The A-band O-side chain is electroneutral at physiological pH, while the B-band O-side chain contains numerous negatively charged sites due to the presence of uronic acid residues in the repeat unit structure. Strain PAO1 (A+ B+) and three isogenic LPS mutants (A+ B-, A- B+, and A- B-) were studied to determine the contribution of the O-side-chain portion of LPS to metal binding by the surfaces of gram-negative cells. Transmission electron microscopy with energy-dispersive X-ray spectroscopy was used to locate and analyze sites of metal deposition, while atomic absorption spectrophotometry and inductively coupled plasma-mass spectrometry were used to perform bulk quantitation of bound metal. The results indicated that cells of all of the strains caused the precipitation of gold as intracellular, elemental crystals with a d-spacing of 2.43 A. This type of precipitation has not been reported previously for gram-negative cells and suggests that in the organisms studied gold binding is not a surface-mediated event. All four strains bound similar amounts of copper (0.213 to 0.222 micromol/mg [dry weight] of cells) at the cell surface, suggesting that the major surface metal-binding sites reside in portions of the LPS which are common to all strains (perhaps the phosphoryl groups in the core-lipid A region). However, significant differences were observed in the abilities of strains dps89 (A- B+) and AK1401 (A+ B-) to bind iron and lanthanum, respectively. Strain dps89 caused the precipitation of iron (1.623 micromol/mg [dry weight] of cells) as an amorphous mineral phase (possibly iron hydroxide) on the cell surface, while strain AK1401 nucleated precipitation of lanthanum (0.229 micromol/mg [dry weight] of cells) as apiculate, surface-associated crystals. Neither iron nor lanthanum precipitates were observed on the cells of other strains, which suggests that the combination of A-band LPS and B-band LPS produced by a cell may result in a cell surface which promotes the formation of metal-rich precipitates. We therefore propose that the negatively charged sites located in the O-side chains are not directly responsible for the binding of metallic ions; however, the B-band LPS molecule as a whole may contribute to overall cell surface properties which favor the precipitation of distinct metal-rich mineral phases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blotting, Western
  • Electrophoresis, Polyacrylamide Gel
  • Lanthanum / metabolism
  • Lipopolysaccharides / chemistry
  • Lipopolysaccharides / metabolism*
  • Metals, Heavy / metabolism*
  • Microscopy, Electron
  • Pseudomonas aeruginosa / metabolism*
  • Pseudomonas aeruginosa / ultrastructure
  • Spectrophotometry, Atomic

Substances

  • Lipopolysaccharides
  • Metals, Heavy
  • Lanthanum